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By Marcus 0. Creager

SUMMARY

An Investigatlon of the effect of leading-edge thickness on the flow
over flat plates with square and cylindrical blunting was conducted at a
Mach number of 4 and free-stream Reynolds numbers per inch of 2380 and
6600. Surface pressures were measured on & series of models whose leading-
edge thicknesses ranged from 0.25 to 1 inch. Heat-transfer rates were
measured from s flat plate which was blunted by a l-inch-diameter cylin-
drical leading edge. All tests were performed with the Instrumented
gurfaces at zero angle of sweep and zero angle of attack.

For the test conditions, the bow shock wave was detached and leading-
edge shape had no effect on surface pressures aft of two leading-edge
thicknesses. The surface pressures could be predicted by a combination
of shock-wave boundary-layer interactlon theory and blast wave theory.
This combination applied equally well to simjilar data of other investiga-
tions. An empiricsl expression for local Reynolds number at the boundary-
layer edge was found to correlate both the present data and data from
other investligations covering a wide range of conditions. The local
Reynolds number per inch was found to be lower than free-stream Reynolds
number per inch, nearly constant for the test length, and to have negli-
gible dependence on leading-edge bluntness. This reduction depends on
the square root of the ratlo of total pressures across the normsl bow
shock wave,

The local Nusselt number was found to depend only on the local
Reynolds number for the present tests, and is predicted by the familiar
Pohlhausen flet-plate theory. As compared to the sharp condition, blunt-
ing the leading edge of flat plates, with consequent reduction of local
total pressure, was found to increase the heat-transfer coefficients in
the region where surface static pressures were high and to reduce the
coefficients where the surface static pressures approached the free-stream
value.
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INTRODUCTION

The presence of the boundary layer on a body effectively changes body
shepe. The effect on a slender body may be sufficlently large to produce
a measurable strengthening or even detachment of the bow shock wave at
supersonic speeds. Also, as speed is increased, interactions occur between
the boundery leyer and the shock wave, beceuse the shock wave "wraps"
closely back over the body. These two phenomena, shock strengthening
and "wrepping" effect, change the flow field from that occurring in the
usual low supersonic speed, high Reynolds number laminar flow over &
plate.

A theoretical study of the hypersonle viscous flow over & sharp-
nosed plate (ref. 1) brought out s parameter to describe phenomens occur-
ring in the regilon of "weak" interaction between the boundary layer and
the leading-edge shock wave. This interaction parameter is a special
combingtion of the usual flow parameters, Reynolds number and Mach num-
ber. The regionm of strong Interaction, near the leading edge, was inves-~
tigated theoretically in reference 2 where this same interaction parameter
was used. Correlation of surface static pressures measured on flat plstes
with square leading edges in hypersonic flow was obtalned in reference 3
using this interaction parameter, but the magnitude of the pressures was
greater than that predlcted by the theories of references 1 and 2. The
discrepancy between the theory and experiment was ascribed in reference 3
to leading-edge bluntness effects. Also, high static pressures measured
by Kendall (ref. 4) on a flat plate with & very sharp leading edge were
correlated by the interaction parameter bubt not satisfectorily predicted
by the interaction theorlies of references 1 snd 2.

In reference 5, Hammitt, Vas, and Bogdonoff formed an empirical
relation to explain the leading-edge thickness contribution to the surface
pressures messured on a series of blunted flat plates. A linear combina-
tion of the viscous interactlion parameter and an empirical "inviseid!
parameter was postulated. They obtained falr correlation of their own
tests using this empirical relation; however, they were umable to predict
the results of the experiments described by Bertram in reference 6.

More recently, blast wave theory has been applied to the inviscid
problem by Lees (refs. 7 and 8) to obtein a functional relation for the
inviscid pressure term. Cheng and Pallone (ref. 9), following similar
lines of reasoning, obtained an luviscid pressure term similar to that
of Lees. Both differ from the emplrical relation of reference 5.

Lees, reference 10, analyzed the influence of the leading-edge shock
wave (from blunt and sharp leading edges) on the laminar boundary lsyer
&t hypersonlc speeds. For sharp leading edges he showed the effects of
a highly curved attached leading-edge shock to be carried back over &
large portion of the surface and to alter appreclably the temperature and
vorticity at the outer edge of the boundery layer. By conslidering detached
shocks for a blunt leading edge, Lees predicted the change of induced
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pressure with interaction parsmeter as measured by Hammitt and Bogdonoff
and described in reference 3. However, the magnltude of the pressure
was not predicted.

The purpose of the research described in this paper was to study
the aerodynamic and heat-transfer processes occurring over the surface
aft of the leading edge of flat plates with detached shock waves. It
was hoped that the results obtalned with the low-density test conditions,
which provide an aerodynamic magnificetlon of the leading-edge region,
would clarify the effect of size and shape of leading edge on the
fundamental processes occurring there,

Experimentsl pressure-distribution and heat-transfer data were
obtained from blunted flat plates in a rarefied gas stream. The results
are compared with the results of various other similsr investigations.

SYMBOLS
a exponent defined in equation (8)
b constant defined in equation (Lb)
B.L. boundary layer
c | factor defined in eguation (5b)
ey specific heat at constant pressure, Btu/lb, °F
Cyw constant in linear relation between viscosity and tempersture
cy constant defined in equation (5b)
Cp drag coefficient based on frontal area
d diameter or thickness, ft
h heat-transfer coefficient, Btu/ft2, hr, °F
I blast wave pressure term, __Mi

(x/4) 2/3

Is modified Bessel function, zero order, first kind
X thermal conductivity, Btu/hr, £t2, °F/ft
kp film thermal conductivity, Btu/hr, £12, °F/ft

X constant defined by equation (8)
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modified Bessel function,'zero order, second kind
Mach number, dimensionlesgs

number of molecules per unit volume, 1/cu £t
Nusselt number, %?, dimensionless

pressure, 1b/sq ft

3600 Kep
Prendtl number, —————=i, dimensionless
k

heat flow, Btu/hr

outer radius of amnular space around heat-transfer element, ft

radius at minimum temperature point on film, ft
radius of point on £1Im, £t

Reynolds number, EE%§§2, dimensionless
0

Reynolds mumber, 22X, dimensionless
n

ares defined by =

ps 84 £t

film thickness, £t

temperature, °R

temperature of test-section surfaces, °R
velocity in x direction, f£t/sec

most probable molecular speed, ft/sec
coordinate length, ft (see fig. 3)
coordinate length, £t (see fig. 3)
empirical constants

ratio of specific heats, dimensionless
boundary-leyer thickness, ft

parameter defined in equation (B9)
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€ emigslivity, dimensionless
K Boltzmann constant, 7.28x10™27, Btu/molecule, °R
u viscosity, 1b/sec ft
p density, 1b/cu £t
o Stefan-Boltzmann constant, 1.73x107°, Btu/ft2 hr, °R*
X interaction parameter, M
J Beor
w exponent of viscosity-temperature law defined in equation (BY)
Subscripts
b blunt
a characteristic dimension for quantity involved
P heat-transfer element quantity
8 sharp
Ty total quantity In free stream ahead of all disturbances
17 total quantity behind leading-edge normal shock wave
ta total quantity behind probe normsl shock wave
ty local total quentity
W body surface quantity
X characteristic length for quantity involved
1 "effective" recovery condition
o quantity evelusted at free-stream condition shead of all disturb-
ances
Superscript

( })t T method
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DESCRIPTION OF EQUIPMENT AND TEST METHOD

Wind Tunnel

The tests were conducted in the Ames 8~-inch low-density wind tunnel.
This wind tununel is an open-Jjet nonreturn type tunnel. Alr was used as
the test gas. The 8-inch tunnel is & scaled up version of the low~-density
wind tunnel described in reference 11, A five-stage set of steam ejectors
is used to produce the main flow., The axisymmetric nozzle was designed
by the method described Iin reference 12, The nozzle was constructed of
shim stock of varying thickness and alternate shims were removed to per-
mit boundary-layer removel as described in referexrce 13. The design Mach
number was 4 through the stream-static pressure renge of 100 to 300 microns
of mercury absolute. The boundary layer 1s removed by steam ejectors
operating in parallel with the main drive set. The physicel arrangement
of the nozzle and test section is shown in figure 1.

Tmpact pressure surveys Indicated that no strong shock waves were
present in the nozzle and Jjet when the expamnsion ratio across it was
propexrly set and controlled, Additional surveys were made in & plane
normal to the stream direction 1-1/L4 inches downstream of the nozzle exit.
The static pressure of the stream was obtained by measuring the nozzle
wall pressure at a point 2 inches upstream of the exlt plane of the noz=-
zle, This method of obtaining stream static pressure has been described
in reference 12,

A typlcal Mach number distribution obtained from these measured
guantities is shown in flgure 2, The Mach number was calculated in two
ways, (1) from measured impact pressure and static (wall tap) pressure
together with Rayleigh's piltot formuls (circular symbols), and (2) from
messured impact pressure and upstream reservolr pressure (total head)
using the assumptions that the flow through the nozzle was isentroplic and
that the probe produced a normal shock wave (square symbols)., Good agree-
ment was obtained between the two methods of obtalning Mach number over
the range of pressure levels used In the investigation. Therefore, the
assumption theat the flow through the nozzle was isentroplc appears to be
reasongble.

Table I presents the actusl usable stream dismeter and Mach number
for two test-section static pressures.

Pressure Models

Four pressure models were tested. Three two-dimensionsl wedges
of 5° total included angle were instrumented for messurement of surface
pressures, The leading edges were cylindricel of 1, 1/2, and 1/4 inch
diameter. A l-inch-thick slab with a square leading edge was similarly
Instrumented. The models were sufficlently wide (6 in.) to span the
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usable stream completely. The length of afterbody from shoulder point
(ta.ngent point) was 5 inches. Pressure orifices, l/32-inch diameter,
were installed in the upper surface at intervals of 1/16 to 1/2 inch
slong the midspan plane. The spacing was smaellest near the leading edge.
An orifice was installed at the nose of each body on the axis of symmetry.

The gurface orlfices were connected to a pressure manifold by stain-
less steel tubes. A pressure switch was used to select and connect any
desired orifice to the pressure-~sensing device. An oil manometer was
used to measure the orifice pressures. The manometer fluid was diffusion
pump oll which had been well outgassed.

Surveys were made in the flow field adjacent to the body with an
impact tube. The tube end was flattened to an over-gll helght of
about 0.030 inch to minimize disturbances in the y dlrection. The
pressures from this probe were likewise measured with an oil-filled
U-~-tube manometer,

Heat~Transfer Model

The heat-transfer model, figure 3, was similar in shape to the
eylindrical nosed pressure distribution models described gbove. The
model was constructed of copper with a leading-edge diameter of 1 inch.
The model was 5 inches in length from the shoulder to the base. It was
6 inches wide. Cylindricel heaters installed in the body, one on each
side, were used to maintain the desired model temperature.

At various locations along the model length, heat-transfer elements,
hereafter celled heat plugs, were installed as seen in figure 3. The
heat plug 1s a copper spool, 1/8-inch diameter and 1/8-inch long, inserted
in a hole in the model shell with a 1/64-inch air gap between the plug
and the body. The spool is supported by a Bakelite stem. The surface
of the plug was machined to the contour of the plate. An electrical
heating coll was wound on the plug to supply heat to the plug. A differ-
ential thermocouple indicated the temperature difference between the plug
and the model body. Thermocouples were mounted in the body near the heat
plug to indicate tempersture of the body.

A 0.003=-inch~thick plastic £ilm was placed over the surface of the
model to seal the gap between the plug and the body from the alr stream.
The air gap was then vented to the hollow portion Inside the model and
thence to constant static pressure of the test chamber. Thus, the heat
loes due to conduction through the air gap was minimized because of the
presence of a quiescent layer of low-pressure air around the test plug.
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Test Method

The heat~-transfer rate from the surfece of the plug to the air stream
was determined as a functlon of the plug temperature. A test point was
obtained by heating the model and the test plug to the same umiform tem~
perature, and measuring the plug heater curren'b for this steady-state
condition.

A series of tests were made, with no air flow through the tunnel,
at pressures of approximstely 0.l micron of mEFrcury sbsolute and of 100
to 300 microns, to obtain the radlation and conduction heat losses. The
variaetion of the sum of these losses with pressure was within the scatter
of the data. This total loss was then treated as a tare to be subbtracted
from the gross heat input to the plug obtained in each test with air flow.
The magnitude of the tare was approximately 10 percent of the total heat
input at the highest rate and sbout 60 percent of the total heat input
at the lowest rate. The lowest heat rate occurred near the rear of the
plate at the lowest stream pressure.

At a given flow condition, net heat input to the plug was obtained
at a series of plug temperature levels rangling 20° %o 50 F above stagna-
tion temperature. The net heat flowto the plug, which is the heat flow
to the stream, was divided by the heat-transfer area and plotted as a
function of the difference between the plug temperature and the stagnation
temperature of the stream. The slope of this curve is proportionsal to
the heat-transfer coefficient. The heat-transfer ares was taken as
slightly larger than the plug area as explained in Appendix A. Extrapo-
lation of the curve to zero heat transported gives an intercept which is
the difference hetween an "effective™ recovery tempersture for a uniform
temperature body and stagnation temperature. A typlcal test curve is
shown in figure L,

The test conditions are summarized in table ITI. TIn all casges the
plate leading edge was unswept, and the surface on which the measurements
were made was at zero angle of attack.

EXPERIMENTAL RESULTS

Surface Pressure

The ratios of measured surface pressure to free-stream static
pressure, p/pm, are shown in figure 5 as a function of dlstance x fram
the leading edge. Spanwise surface-pressure variations were found to be
less than 2 percent within 1/2 inch of midspan. The pressures for plsates
with cylindrical blunting are three to four times larger than free~stream
pressure nesr the leading edge, and decrease with distance x. It is %o
be noted that, in contrast, the pressures measured on the square leading-
edge plate are low near the shoulder, and increase with distance x.

il
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However, the pressure variation aft of 1-1/2 inches colnecides with the
distribution of the cylindrical nosed plates, The low pressures are due
to overexpansion at the square leading edge and have been observed pre-
viously (refs. 5 and 14). The present results corroborste the resulbs of
references 5 and 14 that the overexpansion does not affect the pressure
distribution aft of about two leadlng-edge thicknesses. For both types
of leading edges, the pressures approach free-gtream values near the rear
of the Dbodies.

Flow=-Field Surveys

Impact pressures were measured in the flow field for leading-edge
Reynolds numbers of 1650 and 6600. These surveys were made to obtaln an
estimate of the boundery~layer thickness, flow quantities along the
boundary-layer edge, and the shock~wave location.

In figure 6, the veriatlon of impact pressure with distence above
the plate is shown for a typlcal survey. Three distinct flow regions are
evident in this figure. The first, near the surface, corresponds to the
boundary layer where the impact pressure Increases rapidly. A second
region is observed to exist Just outside the boundary layer where the
impact pressure is nearly constant., The third region appears to be a
region of possible shear flow where the impact pressure Increases con-
tinuously with helght up to the shock weve. The maximum or pesk impact
pressure corresponding to the shock wave 1s not shown in figure 6. Above
the shock wave, the impact pressure drops to the free-stream value.

The height above the plate at which the pesk Impact pressure was
measured was defined as the location of the shock wave. In figure 7,
the location of the shock wave is plotted versus distance from the lesd-
ing edge. Blast wave theory (refs. T and 9) predicts the shock-wave loca-
tion for regilons not too close to the leading edge of blunt flat plates
1n hypersonic flow to be:

Y+ (4/2) _ (constanty (5 2/s (1)
d a

This relation, adjusted to fit the data fer from the cylindrical leading
edge, is presented in figure T as the solid line. The data agree well
with the prediction up to within 3 diameters from the leading edge. The
constant, empirically determined, has a value of 1.4%7. This constant as
given in reference 9 is 0.89(Cp)1/2. The value calculated from this
relation for assumed Cp of 1.2 differs from the experimentally
determined constant by a factor of 22/3,
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Heet Transfer

In figure 8, the local "effective" temperature recovery factor is
shown plotted as & function of distence from the leading edge. The
recovery factors vary from a value of sbout 0.65 at the shoulder to
approximately values of 0.8 and 0.86 at x/d = 2, and are nearly constant
at these values for the remainder of the plate length. It is believed
that the low values at the shoulder are due to the linear extrapolation
to zero heat-transfer rate as shown in figure 4 and to the Implied sur-
face condition of uniform body temperature. It is noted that the recov-
ery factors are higher for the lower Reynolds number conditions. This
may be experimental error in evaluating the recovery tempersture because
of the corresponding low values of hest-transfer coefficient.

The measured heat-transfer coefficlents are plotted as a function
of x/& as shown in figure 9. The heat-transfer coefficients are high
near the leading edge and decrease with distance from the leading edge.
It 1s also noted that the heat-transfer coefficilents increase with increase
in free-stream Reynolds number based on leading-edge thickness.

DISCUSSION

Boundary~Layer Thickness

The edge of the boundary layer was determined from the veloclty
distributions through the boundary layer. The velocities were computed
from the impact pressures on the assumption that the total temperature
was constent through the flow field and the static pressure gradient
normal to the plate was equal to zero. The edge of the boundary layer
is defined as that distance above the plate surface where the velocity
ratlo has approached within 1 percent of the straight "reference” line
drawn through the experimental points in region IT, see figure 10.

The resultant boundary-layer thicknesses are presented in figure 11.
The theoretical prediction of boundary-leyer thickness on a flat plate
with zero thickness leading edge, reference 1, as altered by introduction
of the leading-edge thickness, d, is given below:

5 _| L13( v ; h.z?JMmz’ﬁ; X
a [ %2<Tm> + 0.332(y-1) + W e = (2)

Equation (2) is compared with two sets of data in figure 11 for cylindri-
cal blunting. It is noted that the boundary~layer thickness for the thin
leading~edge plate is predicted fairly well by equation (2), except for
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the reglon near the leading edge. The boundary-layer thickness measured
over the thick leading-edge plate 1s somevhat lower then predicted by
the theory.

Surface Pressure Distribution

References 5 and 6 indicaste that a linear combination of a viscous
term and an inviscid term may be the proper type of formulation to
describe the surface pressure distribution over blunt flat plates in
hypersonic flow. The following linear comblnation of pressure terms is
proposed:

£ =1+ oabX + Bel (3)
POO

where o and B are empirical constents to be determined by comparison
with experiment.

The viscous pressure term, b?, is the parameter pointed out in ref-
erence 1 as & result of the theoretical study of hypersonic flow over a
flat plate with a zero thickness leading edge, where,

_ %245y
~]Remx

b = [9?2% @5) + 0.166(7-1)]7 (1b)

X (ka)

%:EJ_ED_O ()-#C)

The inviscid pressure term, cI, l1s obtained from the blast wave
analogy to the hypersonic flow over blunt flat plates, references 7 and 8,
and also from a characteristic development of the flow field described
briefly in reference 9, where

I= —ﬁ—éw; 7 (52)

The factor ¢ in the inviscid pressure term, as explained in references
8 end 9, is proportional to the energy released into the trangverse flow
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field by the blunt leading edge. The more exact formulation of this
factor, reference 9, is given as ' : -

c = Cl(CD)a/s (5b)

The velue of c¢; Iin the above equation 1s given in reference 9 as 0,112
for air and 0,169 for helium., The pressure drag coefficient, Cp, for

the cylindrical lesding edge is gpproximately 1.2 (see, e.g., ref. 9).

For & square leading edge the drag coefficlent i1s found to be approximately
1.8 if one-assumes impsact pressure acting over the complete front face.

A correlstion of the surface pressures on flat plates in supersonic
and hypersonlc flow 1s shown in figure 12 vwhere measured pressures are
compared with values obtalned from the following form of equation (3):

_P_=l+ bX +——.—CI (6)
P«, \[ C‘W 22/3

It hes been found by trisl that values of 1/NGCG; for a and 1/22/2 for 3
result in the best correlation of the data of the present tests, as well
as data from references 4, 5, 6, 15, and 16, see table III. The solid
line represents & l-to=-l correspondence of measured to theoretlcal values.
The data are noted to be within approximately 20 percent of the solid
(theoretical) line. The calculstion has been made for a temperature
recovery factor assumed equal to 0.86 for the data of references 4, 5,
and the present tests. The recovery factor for the helium data of refer-
ence 5 wag assumed to be 0.82, Calculetions for the conditions of refer~
ences 15 and 16 were masde using their measured wsll temperatures. The
wall temperature affects the parameter b and Cy of the viscous term

in equation (6). In view of the considerable range of variables encom-
passed by this correlstion, the semiempirical expression in equation (6)
1s believed t0 be quite general in applicability.

Local Mach Number

The local Mach number along the boundary-layer edge was obtained by
two methods which are compared in figure 13. Both methods utilize the
nmeasured surface pressures and the assumption of zero pressure gradient
normal to the plate. The set of points in figure 13 labeled "loesl
messurements” was obtalned by use of local measured impact pressures.
The second set, labeled “reduced totel pressure," was obtalned by assum-
ing the total pressure slong the boundary-layer edge to be constant and
equal to the total pressure behind the leading-edge normal shock wave.
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Two results are noted from figure 13. First, although the Mach number
is seen to increase slowly with distance from the nose, it does not
reach free-streem Mach number within the test length. The second and
more important result is the excellent agreement between the Mach number
distributions obtained by the two different methods.

Reduced local Mach niumbers have been reported previously by Brinich
(ref. 17) as obtained in tests conducted at a Mach number of 3.1 over a
hollow cylinder, Both sharp and square leading edges were tested, and
the local Mach number was found to be reduced up to a distance of approx-
imately 3000 nose thicknesses back from the leading edge. Also, Crawford
and McCauley have reported (ref. 18) reduced local Mach numbers obtained
over & hemispherical-nosed cylinder at free-stream Mach number of 6.8 for
distances up to 3 nose thicknesses back along the afterbody.

From the results of the present tests and those of references 17
and 18, it can be concluded that the local properties along the boundary-
layer edge can be obtained by the reduced total pressure method for the
range of the present tests and for similar tests of other investigationms,
1f a detached normal shock exists at the leading edge.

Local Reynolds Number

The assumption that the total pressure was reduced and constant
along the boundary-lsyer edge was applied to the present data, and the
local Reynolds numbers were computed along the boundary-layer edge. In
figure 14 the ratio Rey/Re,y 1is shown plotted as a function of dimen-
sionless distence, x/d. The quantity Reyxy 1s based on local quantities
at the edge of the boundary layer and distance x. The quantity Re, 4
is based on free-stream conditions shead of the leading-edge shock wave
and the diameter of the leading edge. The dabta are linear on the loga-
rithmic plot. The best fit to the data, determined by method of least
squares, resulted in the relation

O.91
Bex _o.u1 <§> (7)
Rewd d

This empirical relation 1s shown as the solid line in figure 1h. It is
noted that the loecal Reynolds number at the boundary-layer edge is
decreased to about 40 percent of the free-stream value and this percent-
age decrease does not very for changes of 10 to 1 in leading-edge Reynolds
numbers. Reduction in local Reynolds number has alsc been obtained by
Brinich (ref. 17) in his transition studies.
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In view of the successful correlation of the present data in terms ]
of local Reynolds number, the method described above was applied to the
results of Kendall (ref. 4), Hemmitt, Vas, and Bogdonoff (ref. 5), Bertram
(refs. 6 and 15), and Erickson (ref. 16). Thé results are presented in -
figure 15. The solild line represents a datum line or variation where the . .
local Reynolds number per inch is equal to free-stream Reynolds number
per Inch. It may be noted that in flgure 15 the effects of leadling-edge
thickness and free-stream Reynolds number, for each set of points, are
fully accounted for. Also 1in figure 15 the Reynolds number ratio for a
fixed value of x/d _decreases with increasing Mach number and seems to
approach a limiting value as Mach number increases. There are two other
parsmeters which differ among these sets of ddta, namely, leading-edge
shape and test gas. In the previous section on surface pressures, the
shape of the leading edge has been shown not to affect the surface pres-
sure distribution past an x/d of 1 to 2. Thus we may rule out the
leading-edge shape parameter provided a detached shock exists, leaving
Mach number and ratlio of specific hegts as possible parameters affecting
correlation of the sets of data.

The empirical fit to each set of data in figure 15 was found by the
method of ledst squares. The general relationship is represented by the
following equation.

22:1 =K (%)a (8) .

The values of K and a sare tabulated in table IV together with those
for the present tests.

The slope is practically the same for all the sets of data shown
in figure 15. Thus the test gas and Mach number dependence 1s contained
in the parameter K of equation (8). An analysis presented in Appendix B
suggests a correlatlon paremeter, namely, the total pressure ratlo across
the normal shock occurring at free-stream Mach number. Thus the values
of the parameter K were plotted versus the total pressure ratio across
the normal shock as shown in figure 16. It is noted that the parameter X
is correlated well by the following equation.

P /2
K = 1.2 <.-Eéj> (9)
Py,

An average vslue of the slope, a, was taken to be 0.91. This average
value of a and the relation for K in equation (9) when substituted
in equation (8) glve the best fit to all the data sets.
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Rex - 1.2 (Ptl >1/2 < > o (10)

The excellent correlstion obtained by the use of equation (10) is
shown in figure 17. It should be noted that the data correlated by use:
of equation (10) cover an extremely wide range of varisbles. For exam-
ple, the data include a Mach number range of from L to 17.3, leading-edge
thicknesses of 0.0002 to 1.0 Inch, and free-stream Reynolds numbers per
inch from 2500 to 108, In addition, the data include tests both 1n air
and in helium. The success of thls correlation suggests that in all cases
considered the total pressure along the boundary-layer edge is constant
and equsal to the total pressure behind the leading-edge normal shock,
Further tests are requlred to determine the applicability of the correla-
tlon over ranges of variables beyond those covered by the dstsa shown.

Heat Transfer

The heat~transfer coefficients are presented in dimensionless form
in figure 18 where the local Nusselt number is plotted as a fumction of
the local Reynolds number. The well-known Pohlhausen solution for local
heat transfer in the laminar boundary layer over a flat plate is

Nux = 0.332(Pr) /3 JReg . (11)

Because the Prandtl number of the present tests 1s nearly 0.72, equa-
tion (11) reduces to

Nuy = 0.295 \/Rex (12)

It is to be noted in figure 18 that this simple Pohlhausen solution fits
the majority of the data quite well. The scatter from the line of equa-
tion (12) can be explained by the limitations of the present heat-transfer
instrumentation. The hest-transfer elements yleld inaccurate results
when h falls to values of around 0.5 Btu/ft2, hr, CF. The tare then
becomes equal or greater than the net heat transfer to the stream.

The effect of blunting on the heat-transfer coefficients over a flat
plate can now be examined. The correlation of figure 18 was made on the
basls of properties evaluated at local conditions at the edge of the
boundary layer. However, in order to account for nonlineasr variation
of viscosity and thermal conductivity, the well-known T*! method
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(ref. 19) for evaluating properties was incorporated. As shown in
Appendix C, the ratio of heat-transfer coefficilents for blunt and sharp
plates is

h.bt ~ <k' /T?:' >.b Rex d (l )
hg! N Regg f; 3
<k' N, T?u’ >

Note that the ratio of Reynolds numbers appearing under the square root
in equation (13) cen be obtained directly frd&f the present correlation
as given by equation (10). The primed quantities are evaluated from the
equations of Appendixes B and C and the known pressure distribution over
the surface of the blunted plate. The quantitles applying to the sharp
plate are evalusted from free-stream conditions.

The results are now applied to a flat plate in flight for the fol-
lowing set of assumed conditions:

My, = 10
Rey/ft = 10°
T, = 420° R
Ty = 1000° R
d =1 in.

The reduced total pressure is assumed to persist over the entire
surface, The local static pressure and local Mach number distributions
are presented in figures 19 and 20 for these conditions. The pressure
was calculated by equation (3), and the local Mach number waes calculated
from equetion (B5). The ratio of the heat-transfer coefficients for a
blunted plate to the heast~transfer coefficients for a sharp plate was
calculated by equation (13). The variation of this calculated ratio with
distance from the leading edge 1s shown in figure 21,

It is noted from figures 19, 20, and 21 that the effect of blunting
the leading edge is to increase the heat-transfer coefficients in the
region over the plate surface where high static pressures exist. How~
ever, as noted from figure 21, the effect of blunting the leading edge
is to reduce the heat-transfer coefficient far back on the plate, where
surface pressures have a value near that of the free stream. It is thus
concluded that blunting with conseguent reduction of total pressure along
the boundary-layer edge increases the heat-transfer coefficient near the
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lesding edge where the high static pressures exist, and reduces the
heat~transfer coefficlent far back on the plate where the static surface
pressure approaches the free-stream value.

SUMMARY OF RESULTS

Pressures and heat-transfer rates-were measured on blunt flat plates
at a nominal Mach number of 4 for free-stream Reynolds numbers per inch
of 2380 and 6600 in air. The Reynolds number based on leading-edge thick-
ness ranged from 600 to 6600. Surface pressures near the leading edge
were found to be nearly three to four times larger than free-stream static
pressures, and these higher pressures persisted far back on the plates.

A linear combination of the viscous hypersonic parsmeter and the blast
wave inviscid parameter was found to correlate pressure distributions
obtained in this and other investigations for Mach numbers of L to 17.3,
free-stream Reynolds numbers per inch from 2500 to 10%, and leading-edge
thicknesses from 0.0002 to 1.0 inch.

Boundary-layer thicknesses, obtained for leading-edge Reynolds num-
ber of 1650 and 6600, asgreed with the theory for flat plates with zero
thickness leading edge. Experimentally determined flow quantities along
the boundary-layer edge asgreed remarksbly well with values calculated
with the assumption of reduced total pressure egual to the leading~edge
stagnetion pressure.

The local Reynolds number at the boundary-layer edge was found to
be decreased to about 4O percent of the free-streanm value by blunting
at a Mach number of L. The decrease in local Reynolds number was not
appreciably affected by changes of 10 to 1 in leading-edge Reynolds
number.

A general correlastion of the ratio of local Reynolds number to
leading-edge Reynolds number was obtained by comparing the present test
results with the results of similar tests which covered wide ranges of
Mach number, lesding-edge thickness, free-stream Reynclds number, and
test gas. The basic assumption underlying this correlation is that the
total pressure along the boundary-layer edge does not differ appreciably
from stagnation point pressure. If this condition is assumed to be true,
then the local Reynolds number along the boundary-layer edge is lower
than free-stream Reynolds number by a factor which is very nearly the
square root of the total pressure ratio across the normal shock wave &t

the lesding edge.

Heat-transfer rates were measured for leading-edge Reynolds numbers
of 2380 and 6600. TIocal Nusselt numbers were correlsted by local Reynolds
numbers and predicted by the well-known Pohlhausen solution wherein locel
conditions at the boundary-layer edge are used. As compared to the sharp
condition, blunting of a flat plate was found to Iincrease the heat-transfer

coefficlents in the reglon near the leading edge where high static
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pressures and reduced total pressure exist, and to decrease the heat-
transfer coefficients in the region far from the lesding edge where
reduced static and total pressures exist.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 9, 1957
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APPENDIX A
DETERMINATION OF THE HEAT-TRANSFER AREA

The net heat was considered to be transferred from the top surface
of the cylindrical test plug to the air stresm. Thus the ares, S, used
in the following equation was the area of the top of the test plug.

q= hS(T'Tn) (A1)

However, the film stretched over the model (see fig. 3 insert) does con-
duct some heat away from the plug. Also, the film receilves energy from
the cylindrical surface of the plug by free molecular conduction through
the annular air space around the plug. This film acts much as a circular
fin in dissipating the heat from the test plug. This effect is to
increase the area to be usged in calculating the heat-transfer coefficient.
The following anelysis of the fin effect leads to a form of the correction
to the test area.

The differential eguation
governing the temperature distri-
bution in the circular film fin
may be found by summing the gquan-
tities of heat transferred by the
various means to and from an
annular element of the fin (see
sketch (a)). Azimuthal varia-
tions of these quantities around
the test plug will be considered
negligible, The assumption is
made that temperature differences
are small, so that the radiation
exchange terms may be writiten in
linesr form. The width of the
annular alr space is of the order
of e mean free path of the gas.
Thus, it is assumed that the Sketch (a)
annular element of. fin gains heat
from the plug by free moleculsr conduction through the annular air space.
This element also transfers heat to the stream by convection through the
flow boundary layer. A further assumption will be made that the varia-
tion of heat-transfer coefficient and recovery temperature is negligible
over the area of film considered. When these terms are combined with
the normal terms of conduction in the film fin, the heat flow balance
mey be written for the ennular element

dap + dge + dog - dgg - daey = O
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where

dag heat flow out of element by film conduction

dae heat flow from element by air-stream conduction

dqR heat flow from element by radistion

day heat flow into element by film conduction

Gdgy heat flow to lower side of element by free molecular conduction

The differential equation is then found to be:

SC-DE-P-D0

The differential equation (A2) is a form of Bessel's equation., The
solution may be written in terms of modified Bessel functions of zero
order, first and second kinds, as

T - 2 = 2eTo(x V) + AKo(r VE) (43)
where
A= B (31%1“ + boeT® 2 4 n (AL)
trke T_P_ Tp
-1 3Nk 3,
B b\ +_hceTo + h) (A5)

and Az asnd A4 are constants of integration to be determined by the
following boundary conditions at

r=rp, Ta=Tp
(46)

r

Tw T=Tw=TP
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In the range of interest, the modified Bessel functions in the
solution (A3) may be replaced by the asymptotic expressions, reference 20,
for large values of the argument.(r'Jﬁ). These expressions are

IQ(I' '\[ﬁ) = exP(r JE)

Jox(x VB) &

,__lr___ exp(~-r 'Jf)
2(r NB)
J

Relations (A7) are introduced into equation (A3), the boundary conditions
are applied, and the constants of integretion are evaluated. The radius,
TI'm, &t which the minimum tempersture occurs is found to be very nearly
the average radius given by

(A7)

n

Ko(r VB)

ro = EL‘;_’E;E (48)

The temperature distribution in the circular fin 1s then given by the
resulting form of equation (A3) as

o A exp(r NB) +< M} exp(2ry NB-r VB)
-3 - ﬁ Zn V51 (49)
A
TP - E m exp(rp \E) + M&) exp(grm ﬁ_rp \,ﬁ)
. 21 NB+1 R

The heat removed from the plug by the film is transferred to the stream
according to the following relation

dq = h(T-Ty)ds (A10)

This expression 1s integrated using the temperature distribution in
equation (A9) for T, and assuming a constant heat-transfer coefficient.
The resulting expression is found
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Tm
= 2nh\/ﬁ (T-Tn)r dr (A1)
I

Assuming that the smount of heat represented in equation (All) were to
be transferred at plug temperature from an area given by =%, we have

q = wh(T5-rp?) (Tp-Ty) (a12)

Thus by equating the right-hand sides of equations (All) and (Al2) we
cen express the heat-transfer radius T as follows:

T2 oarg® 4 ;:?Ef;%;; 2 <' >)<§p> <: Tp -; #) (A13)

In actual computation of the correction, the emlssivity of the film
was assumed to be the seme as that of the chrome-plated plug surface,
that 1s O0.1. The emissivity of the plug with film was found to check
closely with the value normelly taken for polished chrome, The conduc~
tivity of the film was teken as 0.1 Btu/hr, £t2, °F/ft. This value was
obtained from menufacturer!s literature, and was not checked experimen-
tally during these tests. The first approximation to h, found by
using r,, was used to determine ¥. The correct heast-transfer

coefficient is then found using this T computed from equation (A13).



NACA TN Lhik2 23
APPENDIX B
LOCAL REYNOLDS NUMBERS

The ratio of local to free-stream Reynolds number is analyzed for
the case of a blunt flat plate in supersonic flow. The general assump-
tion is made that the total pressure along the boundary-layer edge is
lower then the total pressure in the free stream shead of the bow shock
wave. In addition, the static pressure is assumed constant through the
boundary layer. The local Mach number at the boundary-lsyer edge is
specified by the local statlic and total pressures. The local static
temperature can be found from the loecal Mach number and the known
stagnation conditions.

The defining expression for the ratic of Reynolds numbers is given

- @EE G o

In order to relete the various terms in equation {Bl) to the ratio
of local static to total pressure, the following equations are obtained
from reference 21.

-2
2o (1.2 M2> 7o (B2)
Pty 2
T
Tog <1 + _._ M2> (B3)

The viscosity is assumed to vary as s power of the absolute temperature

p~(TY (Bl)

The following ratios are easily obtained from equations (B2), (B3),
and (BY4).
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2k
1/2 r=x

R e N R i ) (25)
Moo 1-(Teo/Ttg) P Py,

= (F a7 (36)
T P Ptl

=1,
P Y
oo _ (B 2B
o . (X s (37)

The ratios as determined in equations (B5), (B6), and (B7) are introduced
into equation (Bl). The resulting expression is

Rex ts; o -5 1-(T/Pyg) a .
-G @) T (Tufieg) ® 8)

where the constant { 1s as follows:
-1
t = ___.77 (1+w) (B9)

If the assumption is made that the local total pressure 1ls reduced
to that value of total pressure existing behind the leading-edge normal

shock, the ratio of Reynolds numbers becomes,

Rex C’) <_>l' T ®) (310)
Req \P - (To/Tt,) d

The total pressure ratio term is a function only of free-stream Mach
number and gas. As 1s shown 1n the correlations of figure 15, the braced

term 1s constant for fixed free-stream Mach number,



i

NACA TN h1h2 a5

Probable values of the exponent { may be calculated. For a tem-
perature range from 300° R to 900° R in air, w 1s nearly 0.75. From
equation (B9) the value of { is found to be 0.5. For helium, w is
approximately 0.63 for a temperature range of 10° to 100° R, and ¢ 1is
found to be 0.65.
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APPENDIX C
REFERENCE TEMPERATURE FOR FLUID PROPERTIES

The temperature at which fluid properties are evaluated is arbltrary
in empirical correlations. In reference 19 an expression is obtained
which gives an evaluation temperature, the well-known T! <‘emperature.
The adventage of the use of the T' +tempersture is that when properties
are evaluated in this menner, the drag and heat transfer can be expressed
in such a form as to minimize their dependence on Mach number, wall
temperature, Prandtl number, and power lew exponent for viscosity and
thermal conductivity. The expression derived in reference 19 is presented
below.

_TTL =1+ 0.032 M@ + 0.58 TT_W - l> (o1)

If the Nusselt number, as given by the normal Pohlhausen solution,
is written in terms of the T' properties, the form cen be shown to De,

o o ) )

Tt mey be noted from equation (C2) that the T' method of obtaining
reference temperature merely takes into account the nonlinearity of the
viscosity and thermal conductivity variation with temperature. Thus,
if an experiment is conducted over a range of temperatures where the
viscosity and conductivity vary linearly wlth temperature, results
obtained for heat-transfer correlation will be unaltered by the T?
method of data reduction.

For the case of blunt leading edges, the properties are evaluated
at local conditions, the T' method is applied to the local temperatures,
and equation (C2) becomes:

ot = (0 [ 2 Z(°'29?XJ§;§ ) (c3)

For the case of the sharp leading edge, the local properties are
normally consldered as based on free-stream conditions shead of all dis-
turbences, end the T' method is applied as follows:
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o ) )

The following ratlo of heat-transfer coefficient is obtalined from
equations (C3) and (Ch).

(c5)

& dm),

By T'e' /[ Rey

ht R

8 <k! T]..L > Coax
./Ttp_: -
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TABLE I.- STREAM CONDITIONS

Statlic pressure,| Mach |[Stream dlameter,
microns Hg abs |number in.

300 3.95 3.6

100 3.87 3.0

NACA TN Llk2

TABLE IT.- SUMMARY OF PRESENT TEST CONDITIONS

Model leading edge |Test conditions
Type of test |Thickness, on Figures showing
in, epe Mo  |Rey/in. date
Surface pressure 1;& Cylindricel| 3.95 | 6600 {5,12,14,15,17
1/2 .
1 7
1 . Square N
1/4 Cylindrical} 3.87 } 2380
1/2
1 y
1 Square V¥ v o
Tocal flow field 1/h Cylindrieal| 3.95 | 6600 7,11,13
1 N 6,7,10,11,13
Heat-transfer and \l 3.95 | 6600 18,9,18
recovery factor ¥ 3.87 | 2380 J(




TARLE III.- TEST CONDITIONS OF OTHER INVESTIGATIONS

Investigation Reyg My Gas |Leeding edge
Kendall (ref. L) 12 to ”0 5.8 Alr Sharp
Bertram gref. 6) 370 to 1900 6,86 Mr Square
Bertram (ref. 15) 38 to 55 9.6 Alr Sharp
Hammitt and Bogdonoff (ref. 3) 3480 to 6100 11.8 |Helium| Square
Hammitt, Vas, and Bogdonoff {ref. 5)|15,000 to 38,000 12.7 |Helium| BSguare
Erickson (ref. 16) 650 and 685 and 17.3|Helium Sharp

TABLE IV.~ REYNOLDS NUMBER CORRELATION PARAMETERS

Tnvestigation My v K a
Present tests 3.9511.4 [0.415(0.91
Kendell {ref. L) 5.8 |14 | .223] .95
Bertram gref. 6) 6.86|1L.4 | .152] .93
Bertram (ref. 15) 9.6 |1.4 | .117{ .87
Harmitt and Bogdonoff (ref. 3) 11.8 [1.67] .129} .89
Hammitt, Vas, end Bogdonoff (ref. 5){12.7 [1.67] .132] .88
Erickson éref. 16) 16 |L.67]| 086} .90
Erickson (ref. 16) 17.3 [1.67] .076] .93
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Figure 2.- Variation of Mach number with distance from center of strean
for Reynolds number per inch of 6600 at axial distance of 1.25 inches
from exit plane of nozzle. :
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Heot-transfer rate, q/S, Biu /hr 2

NACA TN 41h2
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Temperature difference, T~ Ty, °F

Figure 4.~ Varistion of heat-transfer rate with difference between sur-

face temperature and stream stagnation ’qemperature for free-stream

conditions of My = 3.95 and Reyy = 6600,
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Figure 5.- Variation of the ratio of surface pressure to free-stream
pressure with distance from the leading edge.
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Figure 6.~ Variation of the ratio of impact pressure to leading-edge

stagnation pressure with distance from the plate surface.
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Figure 10.~ Variation of the velocity ratio through the boundary layer.
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Figure 11.- Comparison of measured boundary-lsyer thickness with theory.
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Figure 14, - Variatlion of the ratio of loecal Reynolds number at the boundary-leyer edge to the
free-stream Reynolds number with distence from the leading edge.
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Figure 18.~ Varietion of locael Nusselt number with local Reynolds number for a cylindrlcally
blunted flat plete In supersonic rarefied air flow.
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Figure 19.- Surface pressures calculated for & cylindrically blunted flat wing for zero angles
of yaw and ebtack at en altitude of 100,000 feet.
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Figure 20.- Mach number ratlo calculated for a cylindrically blunted flat wing for zero angles
of attack and yaw at an altitude of 100,000 feet.
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Figure 21.- Effect of blunting on the heat-transfer coefficients calculated for a flat wing for
zero angles of attack and ysw at an altitude of 100,000 feet.
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